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⮚Motivation

• Plant image analysis tools are often used once and then forgotten, 

because they are bespoke for specific scenarios. 

• Is there a model that can be reused for various tasks?

– Foundation model

⮚Challenges

• Domain shift between the pre-trained source and plant data

• Fine-tuning foundation models requires a lot of computational power

– We use adapters to solve this

⮚Contributions

• Benchmark the adaptation of 3 foundation models (MAE [1], DINO [2], 

DINOv2 [3]) using 2 fine-tuning methods (LoRA [4], decoder tuning) on 

3 plant tasks (leaf counting, segmentation, disease classification)

⮚Conclusion

• Adapting a foundation model with LoRA to solve multiple plant tasks is 

promising (e.g. MAE-LoRA and DINOv2-LoRA)

• LoRA outperforms DT in most cases, except segmentation

• LoRA improves the performance in low data regimes and class 

imbalance (see original paper)

• The evaluated models may miss small leaves/stems in segmentation

⮚What is plant phenotyping?

• Measures the observable features of plants

• Indicates the growth and health of crops

• Helps develop better crops for extreme weather and food crisis

⮚What are foundation models?

• Large models (millions/billions of parameters)

• Pre-trained on a huge amount of data

• Able to adapt to various new tasks

⮚What are adapters?

• Light-weight trainable blocks added to pre-trained models

• Not modify the pre-trained weights

• Low Rank Adaptation (LoRA): add trainable rank-decomposition weight 

matrics to each layer of Transformer
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⮚Model
• ViT-base pre-trained using MAE, DINO, DINOv2

⮚Adaptation
• Adapter tuning using LoRA, Decoder tuning (DT)

⮚Tasks
• Leaf counting/segmentation (CVPPP: Arabidopsis/Tobacco)

• Leaf disease classification (Kaggle Cassava dataset)
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⮚We compare the results of adapting different foundation models 

via LoRA and DT, with the SoTA bespoke model in each task.

Counting

(MSE↓)

Segmentation

(BestDice↑)

Classification

(Acc [%] ↑)

SoTA 1.56 0.9 91.3

MAE-LoRA 1.79 0.87 88.8

DINOv2-LoRA 1.63 \ 89.7

DINO-LoRA 1.88 0.82 89.0

MAE-DT 3.6 0.88 77.2

DINOv2-DT 1.92 \ 86.1

DINO-DT 2.73 0.82 83.9
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