

ROTATION-INVARIANT RESTRICTED BOLTZMANN MACHINE USING SHARED GRADIENT FILTERS

Mario Valerio Giuffrida, Sotirios A. Tsaftaris

valerio.giuffrida@imtlucca.it, s.tsaftaris@ed.ac.uk

25th INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS (ICANN) 2016

Motivations

- Invariance allows describing transformed versions of an image with the same representation
- RBM cannot accommodate such variability in the dataset
- Current approaches deal with invariance using data augmentation
- Main problems are: propagation of nuisance due to pixel interpolation, unnecessary time and/or memory consumptions
- We present ERI-RBM, a model that can learn rotation invariance directly from data, without transforming the input image

Contributions

Learned representation with ERI-RBM is compact

 $\nabla W^{(s)}$

- Invariance is achieved using a single-layer network
- We introduce a set of Weight Matrices that are associated with a dominant orientation of the images
- The contribution of each Weight Matrix is shared during the Contrastive Divergence, by rotating the learned filters by a suitable angle

 $\varphi_s - \varphi_t$

Gradient

Sharing

Explicit Rotation-Invariant Restricted Boltzmann Machine

- The interval [0,360[is split in S angles
- Dominant orientation of images is computed via histograms of gradients
- Each angle in S is associated with a different Weight Matrix
- Gradient computed for each image uses a specific Weight Matrix, determined by the dominant orientation
- Contribution provided by the gradient is
- shared amongst the other matrices by rotating the learned filters Rotated filters are added up to the corresponding Weight Matrix

The Revised Energy Function

Dominant

Orientation

$$E(v,h;s) = -h^T W^{(s)} v - c^T v - \left[b^{(s)}\right]^T h$$

Conditional Probabilities

$$p(v_j = 1|h; s) = \sigma\left(c_j + h^T W_{\bullet,j}^{(s)}\right) \ p(h_k = 1|v; s) = \sigma\left(b_k^{(s)} + W_{k,\bullet}^{(s)}v\right)$$

The Shared Gradient Term

Rotation Matrix

 $abla \mathring{W}^{(t)}$

 $\nabla W^{(t)}$

$$\theta = \varphi_s - \varphi_t$$

$$\nabla \mathring{W}^{(t)} = R_{\theta}(\nabla W^{(s)}) \equiv \begin{pmatrix} R_{\theta} \left(\nabla W^{(s)}_{1, \bullet} \right) \\ R_{\theta} \left(\nabla W^{(s)}_{2, \bullet} \right) \\ \vdots \\ R_{\theta} \left(\nabla W^{(s)}_{H, \bullet} \right) \end{pmatrix}$$
Final Undate Rule

Final Update Rule

$$\nabla W^{(s)} := \nabla W^{(s)} + \nabla \mathring{W}^{(t)}$$

Experimental Results

	$\begin{array}{c} \textbf{RBF SVM} \\ C = 10, \gamma = 0.1 \end{array}$	Linear SVM $C = 0.1$	Softmax	K-NN K=3
RBM (H=100)	87.37%	59.27%	57.80%	82.69%
D-RBM (H=100, S=4) D-RBM (H=100, S=9) D-RBM (H=100, S=18)	83.44% $79.18%$ $69.84%$	58.95% $53.62%$ $49.20%$	56.80% 50.76% 46.58%	78.84% 73.56% 63.61%
O-RBM (H=100 S=18)	87.37%	58.99%	57.80%	82.69%
ERI-RBM (H=100, S=4) ERI-RBM (H=100, S=9) ERI-RBM (H=100, S=18)	78.49% $91.27%$ $92.08%$	60.27% 74.87% 77.69 %	58.31% 73.02% 75.84 %	74.97% 88.48% 89.34 %
TI-RBM (H=100, S=18)	80.63%	69.10%	68.20%	73.60%

- Dominant-RBM (D-RBM): many RBMs are learned separately and the dataset is split w.r.t. the dominant orientation of images
- Oriented-RBM (O-RBM): one RBM is learned with input images that are pre-aligned with respect to their dominant orientation
- Transformation-Invariant RBM (TI-RBM): Sohn et. al 2012

Conclusions

- We compared our proposed ERI-RBM with baseline (RBM, D-RBM, and O-RBM) and state of the art (TI-RBM) methods
- Using four different classifiers, we showed our method outperformed all the others (almost +5% better than O-RBM)
- Performance improvement from S=9 to S=18 is little (SVM), which indicates that finer discretisation is not needed
- Accuracy of 92% with 100 hidden units indicates ERI-RBM reaches the highest performance with compact representation
- Future work proved that ERI-RBM learns rotation invariant features with a score of 0.9, the highest amongst the compared methods (arXiv pre-print available)

Acknowledgments

We thank NVIDIA Corporation for providing us a Titan X GPU